Answered

Which of the following tables shows the correct steps to transform $x^2+10 x+24=0$ into the form $(x-p)^2=q$ ? [p and $q$ are integers]
Step $1 x^2+10 x+24-1=0-1$
Step $2 x^2+10 x+23=-1$
Step $3(x+5)^2=-1$
Step $1 x^2+10 x+24-2=0-2$
Step $2 x^2+10 x+22=-2$
Step $3(x+5)^2=-2$
\begin{tabular}{|l|l|}
\hline Step 1 & $x^2+10 x+24+2=0+2$ \\
\hline Step 2 & $x^2+10 x+26=2$ \\
\hline Step 3 & $(x+5)^2=2$ \\
\hline
\end{tabular}

Step $1 x^2+10 x+24+1=0+1$