Consider the false statement:
"An irrational number multiplied by an irrational number always makes an irrational product."

Determine whether each example below explains why the statement is false.
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
Explains why \\
the statement is \\
false.
\end{tabular} & \begin{tabular}{l}
Does NOT explain \\
why the statement is \\
false.
\end{tabular} \\
\hline[tex]$\sqrt{9} \cdot \sqrt{3}$[/tex] & C & \\
\hline[tex]$\sqrt{9} \cdot \sqrt{9}$[/tex] & & \\
\hline[tex]$\sqrt{2} \cdot \sqrt{2}$[/tex] & & \\
\hline[tex]$\frac{1}{\sqrt{3}} \cdot \sqrt{3}$[/tex] & & \\
\hline[tex]$\sqrt{0} \cdot \sqrt{2}$[/tex] & & \\
\hline[tex]$-\sqrt{3} \cdot \sqrt{3}$[/tex] & [tex]$\curvearrowright$[/tex] & S \\
\hline[tex]$\sqrt{3} \cdot \sqrt{2}$[/tex] & [tex]$\curvearrowright$[/tex] & \\
\hline
\end{tabular}

Consider the false statementAn irrational number multiplied by an irrational number always makes an irrational productDetermine whether each example below expla class=