Students at a university frequent the university cafeteria an average of 30 times each week, with a standard deviation of 5 visits, distributed normally. The dean of the university wants to know the average number of visits that separate the bottom 35 % from the top 65 % visits in a sampling distribution of 100 students in order to make better decisions about the staffing of the university cafeteria. Use the z -table below: z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 -0.8 0.212 0.209 0.206 0.203 0.201 0.198 0.195 0.192 0.189 0.187 -0.7 0.242 0.239 0.236 0.233 0.230 0.227 0.224 0.221 0.218 0.215 -0.6 0.274 0.271 0.268 0.264 0.261 0.258 0.255 0.251 0.248 0.245 -0.5 0.309 0.305 0.302 0.298 0.295 0.291 0.288 0.284 0.281 0.278 -0.4 0.345 0.341 0.337 0.334 0.330 0.326 0.323 0.319 0.316 0.312 -0.3 0.382 0.378 0.374 0.371 0.367 0.363 0.359 0.356 0.352 0.348 Round the z -score and ¯ x to two decimal places. Sorry, that's incorrect. Try again? $z$ -score = $\overline{x}$ = visits