Drag each tile to the correct location on the image. Each tile can be used more than once, but not all images will be used.

Consider the function [tex]f(x) = \sqrt[3]{8x} + 4[/tex].

To determine the inverse of function [tex]f[/tex], change [tex]f(x)[/tex] to [tex]y[/tex], switch [tex]x[/tex] and [tex]y[/tex], and solve for [tex]y[/tex].

The resulting function can be written as [tex]f^{-1}(x) = \left(\frac{x-4}{2}\right)^3[/tex].



Answer :

Sure, let's break this down step-by-step:

---

1. Given the function:
[tex]\[ f(x) = \sqrt[3]{8x} + 4 \][/tex]

2. Change [tex]\( f(x) \)[/tex] to [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{8x} + 4 \][/tex]

3. Switch [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \sqrt[3]{8y} + 4 \][/tex]

4. Isolate [tex]\( y \)[/tex]. Start by subtracting 4 from both sides:
[tex]\[ x - 4 = \sqrt[3]{8y} \][/tex]

5. Cube both sides to eliminate the cube root. This results in:
[tex]\[ (x - 4)^3 = 8y \][/tex]

6. Finally, divide both sides by 8 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{(x - 4)^3}{8} \][/tex]

So, the inverse function [tex]\( f^{-1}(x) \)[/tex] can be written as:
[tex]\[ f^{-1}(x) = \frac{(x - 4)^3}{8} \][/tex]

Hence, the resulting function is:
[tex]\[ f^{-1}(x) = \frac{(x - 4)^3}{8} \][/tex]