Find the value of [tex]\(a\)[/tex] if the distance between [tex]\(U\)[/tex] and [tex]\(V\)[/tex] is 6, where [tex]\(U = (2, -4, 1, a)\)[/tex] and [tex]\(V = (3, -1, a + 10, -3)\)[/tex].



Answer :

To find the value of [tex]\( a \)[/tex] given that the distance between the points [tex]\( U = (2, -4, 1, a) \)[/tex] and [tex]\( V = (3, -1, a+10, -3) \)[/tex] is 6, we need to apply the distance formula for points in four-dimensional space.

The distance formula in four-dimensional space is:
[tex]\[ \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2 + (w_1 - w_2)^2} \][/tex]

Given points [tex]\( U = (2, -4, 1, a) \)[/tex] and [tex]\( V = (3, -1, a+10, -3) \)[/tex], we plug these coordinates into the distance formula:

[tex]\[ \sqrt{(2 - 3)^2 + (-4 - (-1))^2 + (1 - (a + 10))^2 + (a - (-3))^2} = 6 \][/tex]

Simplify the expressions inside the square root:

[tex]\[ \sqrt{(2 - 3)^2 + (-4 + 1)^2 + (1 - a - 10)^2 + (a + 3)^2} = 6 \][/tex]

[tex]\[ \sqrt{(-1)^2 + (-3)^2 + (-9 - a)^2 + (a + 3)^2} = 6 \][/tex]

Evaluate the squares:

[tex]\[ \sqrt{1 + 9 + (a+9)^2 + (a+3)^2} = 6 \][/tex]

Expand the squares:

[tex]\[ (a+9)^2 = a^2 + 18a + 81 \][/tex]
[tex]\[ (a+3)^2 = a^2 + 6a + 9 \][/tex]

Now substitute these expansions back into the equation:

[tex]\[ \sqrt{1 + 9 + a^2 + 18a + 81 + a^2 + 6a + 9} = 6 \][/tex]

Combine like terms:

[tex]\[ \sqrt{2a^2 + 24a + 100} = 6 \][/tex]

Square both sides to eliminate the square root:

[tex]\[ 2a^2 + 24a + 100 = 36 \][/tex]

Subtract 36 from both sides:

[tex]\[ 2a^2 + 24a + 64 = 0 \][/tex]

Divide the entire equation by 2 to simplify:

[tex]\[ a^2 + 12a + 32 = 0 \][/tex]

Now, solve this quadratic equation using the quadratic formula [tex]\( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 12 \)[/tex], and [tex]\( c = 32 \)[/tex]:

[tex]\[ a = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 1 \cdot 32}}{2 \cdot 1} \][/tex]
[tex]\[ a = \frac{-12 \pm \sqrt{144 - 128}}{2} \][/tex]
[tex]\[ a = \frac{-12 \pm \sqrt{16}}{2} \][/tex]
[tex]\[ a = \frac{-12 \pm 4}{2} \][/tex]

This gives us two solutions:

[tex]\[ a = \frac{-12 + 4}{2} = \frac{-8}{2} = -4 \][/tex]
[tex]\[ a = \frac{-12 - 4}{2} = \frac{-16}{2} = -8 \][/tex]

Therefore, the values of [tex]\( a \)[/tex] that satisfy the given conditions are [tex]\( \boxed{-4 \text{ and } -8} \)[/tex].