What are the [tex]$x$[/tex]- and [tex]$y$[/tex]-coordinates of point P on the directed line segment from [tex][tex][tex]$A$[/tex][/tex][/tex] to [tex]$B$[/tex] such that [tex]$P$[/tex] is [tex]$\frac{1}{3}$[/tex] the length of the line segment from [tex][tex][tex]$A$[/tex][/tex][/tex] to [tex]$B$[/tex]?
[tex]\[
\begin{array}{l}
x = \left(\frac{m}{m+n}\right)\left(x_2 - x_1\right) + x_1 \\
y = \left(\frac{m}{m+n}\right)\left(y_2 - y_1\right) + y_1
\end{array}
\][/tex]
A. [tex][tex][tex]$(1, 5)$[/tex][/tex][/tex]
B. [tex]$(0, 3)$[/tex]
C. [tex]$(-4, -5)$[/tex]
D. [tex][tex][tex]$(-5, -7)$[/tex][/tex][/tex]