Graph the following equations:
1. [tex]\(\frac{14}{4}=3 \frac{2}{4}\)[/tex]
2. [tex]\(7=\frac{20}{6}=1 \frac{6}{6}\)[/tex]

Solve and simplify:
1. [tex]\(\square \)[/tex] (1)?
2. [tex]\(\rightarrow \frac{9}{4}-2 \frac{7}{4}\)[/tex]

Provide the simplified answers for the following expressions:
A. [tex]\(\frac{8}{5}\)[/tex]
B. 9
C. 7
D. [tex]\(\infty\)[/tex]



Answer :

Sure! Let's break down and solve the given problem step-by-step, focusing on each fraction and equation presented.

1. Start with the first fraction:
[tex]\[ \frac{14}{4} \][/tex]
Simplify this fraction:
[tex]\[ \frac{14}{4} = 3 \frac{2}{4} = 3.5 \][/tex]
So, [tex]\(\frac{14}{4} = 3.5\)[/tex].

2. The second part involves:
[tex]\[ 7 = \frac{20}{6} \][/tex]
Simplify [tex]\(\frac{20}{6}\)[/tex]:
[tex]\[ \frac{20}{6} = 3 \frac{2}{6} \approx 3.3333 \][/tex]
It's given that [tex]\(\frac{20}{6} = 3.3333\)[/tex].

3. Next, we analyze the expression with the placeholder for a number:
[tex]\[ \square (1) ? \][/tex]

4. Proceed to evaluate the equation:
[tex]\[ \frac{9}{4} - 2 + \frac{7}{4} \][/tex]
Simplify each term:
[tex]\[ \frac{9}{4} \approx 2.25, \quad 2, \quad \frac{7}{4} \approx 1.75 \][/tex]
Combine these values:
[tex]\[ 2.25 - 2 + 1.75 = 2.0 \][/tex]

5. Now consider the fraction:
[tex]\[ \frac{8}{5} \][/tex]
Simplify [tex]\(\frac{8}{5}\)[/tex]:
[tex]\[ \frac{8}{5} = 1.6 \][/tex]

6. Finally, you are asked to look at these values in the context of 7 and 1:
- The check value is 7, but the calculations from the equations and simplifications are as follows:
[tex]\[ 3.5, 3.5, 3.3333, 7, 2.0, 1.6 \][/tex]

In summary:

1. [tex]\(\frac{14}{4}=3.5\)[/tex]
2. [tex]\(\frac{20}{6} \approx 3.3333\)[/tex], which simplifies to a check value of [tex]\(7\)[/tex].
3. Simplifying [tex]\(\frac{9}{4} - 2 + \frac{7}{4} = 2.0\)[/tex].
4. [tex]\(\frac{8}{5} = 1.6\)[/tex].

This detailed solution shows the process to get:
[tex]\((3.5, 3.5, 3.3333, 7, 2.0, 1.6)\)[/tex].