Answer :

Certainly! Let's simplify the expression [tex]\(\sqrt{24 y} + \sqrt{54 y}\)[/tex].

### Step 1: Express Each Term with Simplified Square Roots

First, we express each term under the square root in its simplest radical form.

- For [tex]\(\sqrt{24 y}\)[/tex]:
[tex]\[ 24 y = 4 \cdot 6 y = 2^2 \cdot 6 y \][/tex]
So,
[tex]\[ \sqrt{24 y} = \sqrt{2^2 \cdot 6 y} = \sqrt{2^2} \cdot \sqrt{6 y} = 2 \sqrt{6 y} \][/tex]

- For [tex]\(\sqrt{54 y}\)[/tex]:
[tex]\[ 54 y = 9 \cdot 6 y = 3^2 \cdot 6 y \][/tex]
So,
[tex]\[ \sqrt{54 y} = \sqrt{3^2 \cdot 6 y} = \sqrt{3^2} \cdot \sqrt{6 y} = 3 \sqrt{6 y} \][/tex]

### Step 2: Add the Simplified Terms

Now, we add the two simplified terms:
[tex]\[ 2 \sqrt{6 y} + 3 \sqrt{6 y} \][/tex]

### Step 3: Combine Like Terms

Both terms have the common factor [tex]\(\sqrt{6 y}\)[/tex]. We can factor this out:
[tex]\[ 2 \sqrt{6 y} + 3 \sqrt{6 y} = (2 + 3) \sqrt{6 y} = 5 \sqrt{6 y} \][/tex]

### Final Answer

The simplified form of the expression [tex]\(\sqrt{24 y} + \sqrt{54 y}\)[/tex] is:
[tex]\[ 5 \sqrt{6 y} \][/tex]

Therefore, [tex]\(\sqrt{24 y} + \sqrt{54 y} = 5 \sqrt{6} \sqrt{y}\)[/tex].