Answer :
It looks like there may be some mistakes in your calculations. Let me show you the correct step-by-step solution for each operation:
### Problem 1: [tex]\(-984 - (+456)\)[/tex]
1. Remove the parentheses by recognizing that [tex]\((+456)\)[/tex] is simply [tex]\(456\)[/tex].
2. Now, you need to subtract [tex]\(456\)[/tex] from [tex]\(-984\)[/tex].
3. This subtraction can be seen as adding [tex]\(-456\)[/tex] to [tex]\(-984\)[/tex]:
[tex]\[ -984 - 456 = -1440 \][/tex]
Therefore, the result is:
[tex]\[ -984 - (+456) = -1440 \][/tex]
### Problem 2: [tex]\(+429 - (-342)\)[/tex]
1. Recognize that subtracting a negative number is the same as adding the positive counterpart of that number.
2. Change the subtraction of [tex]\(-342\)[/tex] to addition:
[tex]\[ 429 - (-342) = 429 + 342 \][/tex]
3. Compute the sum:
[tex]\[ 429 + 342 = 771 \][/tex]
Therefore, the result is:
[tex]\[ +429 - (-342) = 771 \][/tex]
### Problem 3: [tex]\(-956 \times (-123)\)[/tex]
1. Recognize that multiplying two negative numbers results in a positive number.
2. Multiply the absolute values of the two numbers:
[tex]\[ 956 \times 123 = 117588 \][/tex]
3. Since both numbers are negative, the product is positive:
[tex]\[ -956 \times (-123) = 117588 \][/tex]
Therefore, the result is:
[tex]\[ -956 \times (-123) = 117588 \][/tex]
### Summary
The results for the given problems are:
[tex]\[ \begin{aligned} &(-984) - (+456) = -1440, \\ &(+429) - (-342) = 771, \\ &(-956) \times (-123) = 117588. \end{aligned} \][/tex]
### Problem 1: [tex]\(-984 - (+456)\)[/tex]
1. Remove the parentheses by recognizing that [tex]\((+456)\)[/tex] is simply [tex]\(456\)[/tex].
2. Now, you need to subtract [tex]\(456\)[/tex] from [tex]\(-984\)[/tex].
3. This subtraction can be seen as adding [tex]\(-456\)[/tex] to [tex]\(-984\)[/tex]:
[tex]\[ -984 - 456 = -1440 \][/tex]
Therefore, the result is:
[tex]\[ -984 - (+456) = -1440 \][/tex]
### Problem 2: [tex]\(+429 - (-342)\)[/tex]
1. Recognize that subtracting a negative number is the same as adding the positive counterpart of that number.
2. Change the subtraction of [tex]\(-342\)[/tex] to addition:
[tex]\[ 429 - (-342) = 429 + 342 \][/tex]
3. Compute the sum:
[tex]\[ 429 + 342 = 771 \][/tex]
Therefore, the result is:
[tex]\[ +429 - (-342) = 771 \][/tex]
### Problem 3: [tex]\(-956 \times (-123)\)[/tex]
1. Recognize that multiplying two negative numbers results in a positive number.
2. Multiply the absolute values of the two numbers:
[tex]\[ 956 \times 123 = 117588 \][/tex]
3. Since both numbers are negative, the product is positive:
[tex]\[ -956 \times (-123) = 117588 \][/tex]
Therefore, the result is:
[tex]\[ -956 \times (-123) = 117588 \][/tex]
### Summary
The results for the given problems are:
[tex]\[ \begin{aligned} &(-984) - (+456) = -1440, \\ &(+429) - (-342) = 771, \\ &(-956) \times (-123) = 117588. \end{aligned} \][/tex]