Given the complexity and nonsensical elements of the original problem, it should be rewritten for clarity and correctness.
---
Given:
- Plane [tex]$\pi$[/tex] is the perpendicular bisector of [tex]$\overline{STU}$[/tex].
- [tex]$\overline{TX}$[/tex] is a shared side of [tex]$\triangle STX$[/tex] and [tex]$\triangle UTX$[/tex].
Which of the following must be congruent in order to verify that [tex]$\triangle STX \cong \triangle UTX$[/tex]?
A. [tex]$\angle STX \cong \angle UTX$[/tex]
B. [tex]$\overline{ST} \cong \overline{UT}$[/tex]
C. [tex]$\overline{SX} \cong \overline{UX}$[/tex]
D. [tex]$\angle SXU = \angle UXV$[/tex]
---
This version of the question is clearer, grammatically correct, and logically consistent.