These tables represent a quadratic function with a vertex at [tex]\((0, -1)\)[/tex]. What is the average rate of change for the interval from [tex]\(x = 9\)[/tex] to [tex]\(x = 10\)[/tex]?

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
0 & -1 \\
\hline
1 & -2 \\
\hline
2 & -5 \\
\hline
3 & -10 \\
\hline
4 & -17 \\
\hline
5 & -26 \\
\hline
6 & -37 \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{tabular}{|c|c|}
\hline
Interval & \begin{tabular}{c}
Average rate \\
of change
\end{tabular} \\
\hline
0 to 1 & -1 \\
\hline
1 to 2 & -3 \\
\hline
2 to 3 & -5 \\
\hline
3 to 4 & -7 \\
\hline
4 to 5 & -9 \\
\hline
5 to 6 & -11 \\
\hline
\end{tabular}
\][/tex]

A. -101
B. -82
C. -19
D. -2



Answer :

To find the average rate of change of the quadratic function over the interval from [tex]\( x = 9 \)[/tex] to [tex]\( x = 10 \)[/tex], we need to follow these steps:

1. Determine the values of the function at [tex]\( x = 9 \)[/tex] and [tex]\( x = 10 \)[/tex].
2. Calculate the difference in the function values.
3. Calculate the difference in the [tex]\( x \)[/tex]-values.
4. Use these differences to find the average rate of change.

Step 1: Determine the values of the function at [tex]\( x = 9 \)[/tex] and [tex]\( x = 10 \)[/tex].
Given the function [tex]\( f(x) = x^2 - 1 \)[/tex],
- For [tex]\( x = 9 \)[/tex], we have [tex]\( f(9) = 9^2 - 1 \)[/tex]. Therefore, [tex]\( f(9) = 81 - 1 = 80 \)[/tex].
- For [tex]\( x = 10 \)[/tex], we have [tex]\( f(10) = 10^2 - 1 \)[/tex]. Therefore, [tex]\( f(10) = 100 - 1 = 99 \)[/tex].

Step 2: Calculate the difference in the function values.
[tex]\[ f(10) - f(9) = 99 - 80 = 19 \][/tex]

Step 3: Calculate the difference in the [tex]\( x \)[/tex]-values.
[tex]\[ 10 - 9 = 1 \][/tex]

Step 4: Use these differences to find the average rate of change.
[tex]\[ \text{Average rate of change} = \frac{f(10) - f(9)}{10 - 9} = \frac{19}{1} = 19 \][/tex]

Thus, the average rate of change for the interval from [tex]\( x = 9 \)[/tex] to [tex]\( x = 10 \)[/tex] is [tex]\( 19 \)[/tex].

The correct answer is:
C. -19