Answer :

Sure! Let's solve the given trigonometric equation step-by-step.

Given equation:

[tex]\[ \frac{1 - \cos(2A)}{\tan(A)} = \sin(2A) \][/tex]

We begin by simplifying the left-hand side of the equation.

### Step 1: Simplify the Left-Hand Side

First, recall the double-angle identities for cosine and sine:

[tex]\[ \cos(2A) = 1 - 2\sin^2(A) \][/tex]

Rewriting the numerator [tex]\(1 - \cos(2A)\)[/tex]:

[tex]\[ 1 - \cos(2A) = 1 - (1 - 2\sin^2(A)) = 2\sin^2(A) \][/tex]

Now we substitute this back into the left-hand side:

[tex]\[ \frac{1 - \cos(2A)}{\tan(A)} = \frac{2\sin^2(A)}{\tan(A)} \][/tex]

Next, recall that [tex]\(\tan(A) = \frac{\sin(A)}{\cos(A)}\)[/tex]. Hence, [tex]\(\frac{1}{\tan(A)} = \frac{\cos(A)}{\sin(A)}\)[/tex],

So we get:

[tex]\[ \frac{2\sin^2(A)}{\tan(A)} = \frac{2\sin^2(A)}{\frac{\sin(A)}{\cos(A)}} = 2\sin^2(A) \cdot \frac{\cos(A)}{\sin(A)} \][/tex]

This simplifies to:

[tex]\[ 2\sin(A)\cos(A) \][/tex]

### Step 2: Simplify the Right-Hand Side

Recall the double-angle identity for sine:

[tex]\[ \sin(2A) = 2\sin(A)\cos(A) \][/tex]

### Step 3: Equating Both Sides

We found:

[tex]\[ \frac{1 - \cos(2A)}{\tan(A)} = 2\sin(A)\cos(A) \][/tex]

And

[tex]\[ \sin(2A) = 2\sin(A)\cos(A) \][/tex]

Thus:

[tex]\[ \frac{1 - \cos(2A)}{\tan(A)} = \sin(2A) \][/tex]

### Step 4: Verify the Equality

Since both the simplified left-hand side and the right-hand side are [tex]\(2\sin(A)\cos(A)\)[/tex], we can clearly see that:

[tex]\[ (1 - \cos(2A)) / \tan(A) = \sin(2A) \][/tex]

Therefore, the given equation holds true.