Answer :

To solve the limit [tex]\(\lim _{x \rightarrow \infty} \frac{(3-1)^8-(4 x-1)^2}{(3 x+1)^{10}}\)[/tex], let's break it down step by step.

1. Simplify the Numerator:

First, simplify the expression inside the numerator:

[tex]\[ (3-1)^8 = 2^8 = 256 \][/tex]

Then, express the numerator:

[tex]\[ 256 - (4x - 1)^2 \][/tex]

Now expand [tex]\((4x - 1)^2\)[/tex]:

[tex]\[ (4x - 1)^2 = 16x^2 - 8x + 1 \][/tex]

So the numerator becomes:

[tex]\[ 256 - (16x^2 - 8x + 1) = 256 - 16x^2 + 8x - 1 = 255 - 16x^2 + 8x \][/tex]

Thus, the original limit becomes:

[tex]\[ \lim_{x \to \infty} \frac{255 - 16x^2 + 8x}{(3x + 1)^{10}} \][/tex]

2. Analyze the Denominator:

The denominator is:

[tex]\[ (3x + 1)^{10} \][/tex]

For large values of [tex]\(x\)[/tex]:

[tex]\[ (3x + 1)^{10} \approx (3x)^{10} = 3^{10} x^{10} \][/tex]

3. Combine and Simplify:

Now combine the simplified numerator and denominator:

[tex]\[ \lim_{x \to \infty} \frac{255 - 16x^2 + 8x}{3^{10} x^{10}} \][/tex]

Notice that the polynomial in the numerator has a lower power of [tex]\(x\)[/tex] ([tex]\(x^2\)[/tex]) compared to the polynomial in the denominator ([tex]\(x^{10}\)[/tex]).

We can factor [tex]\(x^2\)[/tex] from the numerator to better see the relationship:

[tex]\[ \lim_{x \to \infty} \frac{x^2 \left(\frac{255}{x^2} - 16 + \frac{8}{x}\right)}{3^{10} x^{10}} \][/tex]

Simplify further:

[tex]\[ \lim_{x \to \infty} \frac{\frac{255}{x^2} - 16 + \frac{8}{x}}{3^{10} x^8} \][/tex]

As [tex]\(x\)[/tex] approaches infinity:

[tex]\[ \frac{255}{x^2} \rightarrow 0, \quad \frac{8}{x} \rightarrow 0 \][/tex]

The expression reduces to:

[tex]\[ \lim_{x \to \infty} \frac{-16}{3^{10} x^8} \][/tex]

Since [tex]\(x^8\)[/tex] grows very rapidly as [tex]\(x\)[/tex] approaches infinity, the overall fraction tends to 0.

4. Conclusion:

Therefore, the limit is:

[tex]\[ \lim _{x \rightarrow \infty} \frac{(3-1)^8-(4 x-1)^2}{(3 x+1)^{10}} = 0 \][/tex]