If salt [tex]5.99 \times 10^{-6} \, \text{mol}[/tex] is dissolved in [tex]1.50 \times 10^{-2} \, \text{L}[/tex] of water, which expression can be used to find the molarity of the resulting solution?

A. [tex]2.50 \times 10^{-8} \, \text{M}[/tex]
B. [tex]2.50 \times 10^3 \, \text{M}[/tex]
C. [tex]3.99 \times 10^{-4} \, \text{M}[/tex]
D. [tex]3.99 \times 10^4 \, \text{M}[/tex]



Answer :

To find the molarity of the resulting solution, we need to use the definition of molarity. Molarity (M) is defined as the number of moles of solute (the substance being dissolved) per liter of solution.

Given:
- Moles of salt (solute) = [tex]\( 5.99 \times 10^{-6} \)[/tex] mol
- Volume of water (solvent) = [tex]\( 1.50 \times 10^{-2} \)[/tex] L

The formula for molarity is:
[tex]\[ M = \frac{\text{moles of solute}}{\text{volume of solution in liters}} \][/tex]

Substitute the given values into this formula:
[tex]\[ M = \frac{5.99 \times 10^{-6}}{1.50 \times 10^{-2}} \][/tex]

Dividing [tex]\( 5.99 \times 10^{-6} \)[/tex] by [tex]\( 1.50 \times 10^{-2} \)[/tex], we get:
[tex]\[ M = 0.00039933333333333335 \][/tex]

Now, we need to express this result in scientific notation:
[tex]\[ M \approx 3.99 \times 10^{-4} \, \text{M} \][/tex]

Comparing this result with the given options, the correct answer is:
[tex]\[ 3.99 \times 10^{-4} \, \text{M} \][/tex]