Evaluate the following operations, and show your work for the matrices given below:

[tex]\[
A = \left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad B = \left[\begin{array}{c}
5 \\
-1
\end{array}\right], \quad C = \left[\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right], \quad D = \left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 0 & 1
\end{array}\right], \quad E = \left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 3 & 2 \\
1 & 1 & 2
\end{array}\right]
\][/tex]

a) [tex]\(A + B\)[/tex]

b) [tex]\(C \ \textless \ em\ \textgreater \ B\)[/tex]

c) [tex]\(D \ \textless \ /em\ \textgreater \ E\)[/tex]

d) [tex]\(\operatorname{det}(E)\)[/tex]

e) [tex]\(C^{-1}\)[/tex]

f) The angle between [tex]\(A\)[/tex] and [tex]\(B\)[/tex]

g) Vector [tex]\(A\)[/tex] rotated clockwise by [tex]\(30^{\circ}\)[/tex]

h) Vector [tex]\(B\)[/tex] is stretched along the [tex]\(x\)[/tex] axis by a factor of 2 and then reflected about the [tex]\(y\)[/tex]-axis