[tex]\[ y = 8 - 7x \][/tex]

Slope: [tex]\(\_\_\_\_\_\)[/tex]

[tex]\( y \)[/tex]-intercept: [tex]\(\_\_\_\_\_\)[/tex]

[tex]\[ y = mx + b \][/tex]

In this form:

- [tex]\( m \)[/tex] represents the slope of the line.

- [tex]\( b \)[/tex] represents the [tex]\( y \)[/tex]-intercept of the line.

Let's compare the given equation [tex]\( y = 8 - 7x \)[/tex] to the slope-intercept form [tex]\( y = mx + b \)[/tex]:

[tex]\[ y = -7x + 8 \][/tex]

From this equation, we can see:

- The term [tex]\( -7x \)[/tex] tells us that the slope [tex]\( m \)[/tex] is [tex]\(-7\)[/tex].

- The constant term [tex]\( 8 \)[/tex] represents the [tex]\( y \)[/tex]-intercept [tex]\( b = 8 \)[/tex].

Therefore:

- The slope of the line is [tex]\(-7\)[/tex].

- The [tex]\( y \)[/tex]-intercept of the line is [tex]\( 8 \)[/tex].

In summary:

- Slope: [tex]\(-7\)[/tex]

- [tex]\( y \)[/tex]-intercept: [tex]\( 8 \)[/tex]