Compute [tex]\( AB \)[/tex] and [tex]\( BA \)[/tex], whichever exists, for the following matrices:
(i) [tex]\[ A = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} -3 & 1 \\ 2 & 5 \end{bmatrix} \][/tex]
(ii) [tex]\[ A = \begin{bmatrix} 2 & 4 \\ 1 & 7 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 9 \\ 1 & 5 \end{bmatrix} \][/tex]
(iii) [tex]\[ A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 3 \\ 0 & 4 \end{bmatrix} \][/tex]
(iv) [tex]\[ A = \begin{bmatrix} -1 & 1 \\ -2 & 2 \\ -3 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 2 \\ -3 & 4 & -5 \end{bmatrix} \][/tex]
(v) [tex]\[ A = \begin{bmatrix} 2 & 3 & 4 \\ 6 & 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 \\ -1 & 0 \\ 0 & 5 \end{bmatrix} \][/tex]
(vi) [tex]\[ A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \][/tex]