Answer :

[tex]d_1=9.2m+9.2m=18.4m\\d_2=6.9m+13.8m=20.7m\\\\Area\ of\ the\ kite:A=\frac{d_1\times d_2}{2}\\\\A=\frac{18.4\times20.7}{2}=9.2\times20.7=190.44\ (m^2)[/tex]

Answer:

[tex]\text{The area of kite is }190.44 m^2[/tex]  

Step-by-step explanation:

Given the kite in which length of diagonals are given

we have to find the area of kite.

Length of diagonals are

[tex]p=9.2+9.2=18.4 m[/tex]

[tex]q=6.9+13.8=20.7 m[/tex]

[tex]\text{Area of kite=}\frac{pq}{2}[/tex]

[tex]Area=\frac{18.4\times 20.7}{2}=\frac{380.88}{2}=190.44 m^2[/tex]

[tex]\text{Hence, the area of kite is }190.44 m^2[/tex]