Answer :
[tex]P(1,2)\ \ \ Q(5,4)\\\\
PQ=\sqrt{(x_Q-x_P)^2+(y_Q-y_P)^2}\\\\
PQ=\sqrt{(5-1)^2+(4-2)^2}=\sqrt{16+4}=\sqrt{20}=2\sqrt{5}\approx4,5\\\\
Length\ of\ this\ segment\ is\ equal\ to\ 4,5.[/tex]
Hello,
[tex]d= \sqrt{ (x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} } \\ \\ d=\sqrt{ (5-1)^{2}+(4-2)^{2} } \\ \\ d=\sqrt{ 4^{2}+2^{2} } \\ \\ d= \sqrt{16+4} \\ \\ d= \sqrt{20} \\ \\d= \sqrt{2^{2}*5 }\\ \\d= 2\sqrt{5 } \\ \\ d=4.5[/tex]
Answer: lenght= 4.5
[tex]d= \sqrt{ (x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2} } \\ \\ d=\sqrt{ (5-1)^{2}+(4-2)^{2} } \\ \\ d=\sqrt{ 4^{2}+2^{2} } \\ \\ d= \sqrt{16+4} \\ \\ d= \sqrt{20} \\ \\d= \sqrt{2^{2}*5 }\\ \\d= 2\sqrt{5 } \\ \\ d=4.5[/tex]
Answer: lenght= 4.5