Answer :
PEMDAS
P - Parentheses (or other grouping symbols)
E - Exponents
M - Multiplication
D - Division
A - Addition
S - Subtraction
[tex]8x[(7+4)x^2] - [(11-7)x^4]\\ \\ 8x[(11)x^2] - [(4)x^4] \\ \\ 8x[11x^2] - [4x^4] \\ \\ 88x^3 - 4x^4 \\ \\ -4x^4+88x^3 [/tex]
If you then want to go on to factor it, your answer would be [tex]-4x^3(x-22)[/tex]
P - Parentheses (or other grouping symbols)
E - Exponents
M - Multiplication
D - Division
A - Addition
S - Subtraction
[tex]8x[(7+4)x^2] - [(11-7)x^4]\\ \\ 8x[(11)x^2] - [(4)x^4] \\ \\ 8x[11x^2] - [4x^4] \\ \\ 88x^3 - 4x^4 \\ \\ -4x^4+88x^3 [/tex]
If you then want to go on to factor it, your answer would be [tex]-4x^3(x-22)[/tex]
For this case we have the following expression:
8x {[(7 + 4) x ^ 2] - [(11-7) x ^ 4]}
First, we solve the parentheses:
8x {[(11) x ^ 2] - [(4) x ^ 4]}
We now resolve the brackets:
8x {[11x ^ 2] - [4x ^ 4]}
We now solve the keys:
8x {11x ^ 2 - 4x ^ 4}
We apply the distributive property:
[tex] 88x ^ 3 - 32x ^ 5 [/tex]
Answer:
[tex] 88x ^ 3 - 32x ^ 5 [/tex]