Answer :
[tex]2\frac{3}{4}=\frac{11}{4} \\\\ 1h \ 15min=60 min +15min\to\boxed{75min} \\\\ \frac{11}{4}......75min \\\\ x..........60min \\\\ x=\frac{\frac{11}{4}*60}{75} \\\\ x=\frac{11*15}{75} \\\\ \boxed{x=\frac{11}{5}miles}[/tex]
For this case, what we should do is find Ammar's speed.
We have then:
[tex] v =\frac{d}{t}
[/tex]
Where,
d: distance
t: time
Then, on the other hand we have:
1 hour = 60 minutes
Substituting values we have:
[tex] v = \frac{2\frac{3}{4}}{1\frac{15}{60}} [/tex]
Rewriting we have:
[tex] v= \frac{\frac{11}{4}}{\frac{75}{60}} [/tex]
[tex] v= \frac{\frac{11}{4}}{\frac{5}{4}} [/tex]
[tex] v = \frac{11}{5} [/tex]
Answer:
Ammar hikes [tex] \frac{11}{5} [/tex] miles per hour