Answer :
[tex]ax^2+bx+c=0\\\Delta=b^2-4ac\\if\ \Delta < 0\ then\ no\ solutions\\if\ \Delta=0\ then\ one\ solution:x=\frac{-b}{2a}\\if\ \Delta > 0\ then\ two\ solutions:x=\frac{-b\pm\sqrt\Delta}{2a}\\================================\\\\-x^2+8x-14\geq0\ \ \ \ |multiply\ both\ sides\ by\ (-1)\ \{change\ \geq\ on\ \leq\}\\\\x^2-8x+14\leq0\\\\a=1;\ b=-8;\ c=14\\\\\Delta=(-8)^2-4\cdot1\cdot14=64-56=8 > 0\\\sqrt\Delta=\sqrt8=\sqrt{4\cdot2}=\sqrt4\cdot\sqrt2=2\sqrt2[/tex]
[tex]x_1=\frac{-(-8)-2\sqrt2}{2\cdot1}=\frac{8-2\sqrt2}{2}=\frac{8}{2}-\frac{2\sqrt2}{2}=\boxed{4-\sqrt2}\\\\x_2=\frac{-(-8)+2\sqrt2}{2\cdot1}=\frac{8+2\sqrt2}{2}=\frac{8}{2}+\frac{2\sqrt2}{2}=\boxed{4+\sqrt2}\\\\============================[/tex]
[tex]ax^2+bx+c=0\\\\if\ a > 0\ then\ the\ parabola\ o pen\ up\\if\ a < 0\ then\ the\ parabola\ o pen\ down\\========================\\\\a=1 > 0-therefore\ o pen\ up\ (look\ at\ the\ picture)\\\\===============================\\\\Answer:x\in\left<4-\sqrt2;\ 4+\sqrt2\right>[/tex]
[tex]Solutions\ in\ \mathbb{Z}:\\\\\sqrt2\approx1.4\\\\threfore:4-\sqrt2\approx4-1.4=2.6\ and\ 4+\sqrt2\approx4+1.4=5.4\\\\look\ at\ the\ second\ picture:x=3\ or\ x=4\ or\ x=5\ (x\in\{3;\ 4;\ 5\})[/tex]
[tex]x_1=\frac{-(-8)-2\sqrt2}{2\cdot1}=\frac{8-2\sqrt2}{2}=\frac{8}{2}-\frac{2\sqrt2}{2}=\boxed{4-\sqrt2}\\\\x_2=\frac{-(-8)+2\sqrt2}{2\cdot1}=\frac{8+2\sqrt2}{2}=\frac{8}{2}+\frac{2\sqrt2}{2}=\boxed{4+\sqrt2}\\\\============================[/tex]
[tex]ax^2+bx+c=0\\\\if\ a > 0\ then\ the\ parabola\ o pen\ up\\if\ a < 0\ then\ the\ parabola\ o pen\ down\\========================\\\\a=1 > 0-therefore\ o pen\ up\ (look\ at\ the\ picture)\\\\===============================\\\\Answer:x\in\left<4-\sqrt2;\ 4+\sqrt2\right>[/tex]
[tex]Solutions\ in\ \mathbb{Z}:\\\\\sqrt2\approx1.4\\\\threfore:4-\sqrt2\approx4-1.4=2.6\ and\ 4+\sqrt2\approx4+1.4=5.4\\\\look\ at\ the\ second\ picture:x=3\ or\ x=4\ or\ x=5\ (x\in\{3;\ 4;\ 5\})[/tex]
[tex]-x^2 +8x -14 \geq 0\\
-(x^2-8x+14)\geq0\\
-(x^2-8x+16-2)\geq0\\
-((x-4)^2-2)\geq0\\
-(x-4)^2+2\geq0\\
-(x-4)^2\geq-2\\
(x-4)^2\leq2\\
x-4 \leq \sqrt2 \wedge x-4\geq-\sqrt2\\
x\leq 4+\sqrt2 \wedge x\geq4-\sqrt2\\
x\in[4-\sqrt2,4+\sqrt2]\\\\
x\in[4-\sqrt2,4+\sqrt2] \wedge x\in\mathbb{Z}\\
\boxed{x=\{3,4,5\}}
[/tex]