Answer :
[tex]s^2=169\iff s=-13\ or\ s=13\\\\because:\\\\(-13)^2=169\ and\ 13^2=169[/tex]
[tex]169 = s^{2} [/tex]
Square-rooting on both sides, we get,
[tex] \sqrt{169 } = (+-)\sqrt{ s^{2} } [/tex]
[tex] \sqrt{13*13 } = (+-)\sqrt{ s^{2} } [/tex]
[tex] \sqrt{ 13^{2} } =(+-)\sqrt{ s^{2} } [/tex]
Since, the square cancels out square- square root sign, we have
[tex]13 = (+-)s[/tex]
[tex](+-)s = 13[/tex]
So, when "s" is positive, the value of "s" is 13
and when "s" is negative, the value of "s" is -13
So, the values of "s" are 13 , -13
Square-rooting on both sides, we get,
[tex] \sqrt{169 } = (+-)\sqrt{ s^{2} } [/tex]
[tex] \sqrt{13*13 } = (+-)\sqrt{ s^{2} } [/tex]
[tex] \sqrt{ 13^{2} } =(+-)\sqrt{ s^{2} } [/tex]
Since, the square cancels out square- square root sign, we have
[tex]13 = (+-)s[/tex]
[tex](+-)s = 13[/tex]
So, when "s" is positive, the value of "s" is 13
and when "s" is negative, the value of "s" is -13
So, the values of "s" are 13 , -13