The maximum occurs when the derivative of the function is equal to zero.
[tex]P(t)=-0.3t^{4}+130t+1100 \\ P'(t)=-1.2t^{3}+130 \\ 0=-1.2t^{3}+130 \\ 1.2t^{3}=130 \\ t^{3}= \frac{325}{3} \\ t=4.76702[/tex]
Then evaluate the function for that time to find the maximum population.
[tex]P(t)=-0.3t^{4}+130t \\ P(4.76702)=-0.3*4.76702^{4}+130*4.76702+1100 \\ P(4.76702)=1564.79201[/tex]
Depending on the teacher, the "correct" answer will either be the exact decimal answer or the greatest integer of that value since you cannot have part of a rabbit.