Answer :

[tex]log_ab+log_ac=log_a(b\cdot c)\\\\log_ab-log_ac=log_a(b:c)\\\\log_ab^c=c\cdot log_ab[/tex]


[tex]\boxed{a)\ log2+log3=log(2\cdot3)=log6}\\\\b)\ log2-log3=log(2:3)=log\frac{2}{3}\\\\c)\ 2log2+log3=log2^2+log3=log4+log3=log(4\cdot3)=log12\\\\d)\ 2log2-log3=log2^2-log3=log4-log3=log(4:3)=log\frac{4}{3}[/tex]
Note: Log A + Log b = Log(A*B)

a) log 2 + log 3 = log (2*3) 
                       = log6.

Answer =a.