Answer :
1h = 60m
------------------
7/8w=(1+1/6)h
7/8w=(6/6+1/6)h
7/8w=7/6*60m
7/8w=(7*6*10*m)/6
7/8w=70m
m=(7/8w)/70
m=1/80w
--------------------------------------
In 1 minute Melinda paints 1/80 of the wall.
------------------
7/8w=(1+1/6)h
7/8w=(6/6+1/6)h
7/8w=7/6*60m
7/8w=(7*6*10*m)/6
7/8w=70m
m=(7/8w)/70
m=1/80w
--------------------------------------
In 1 minute Melinda paints 1/80 of the wall.
For this case we can make the following rule of three:
[tex] \frac{7}{8} [/tex] of a wall ---------------> [tex] 1 \frac{1}{6} [/tex] hours
x ------------------------------> [tex] \frac{1}{60} [/tex]
Note: we have the following conversion:
1 hour = 60 minutes
From here, we must clear the value of x we have then:
[tex] x = \frac{\frac{1}{60}}{1\frac{1}{6}}*\frac{7}{8} [/tex]
Rewriting we have:
[tex] x = \frac{\frac{1}{60}}{\frac{7}{6}}*\frac{7}{8} [/tex]
[tex] x = \frac{6}{420}*\frac{7}{8} [/tex]
[tex] x=\frac{42}{3360} [/tex]
[tex] x=\frac{1}{80} [/tex]
Answer:
A part of a wall that Melinda paints in 1 minute is:
[tex] x=\frac{1}{80} [/tex]