Answer :
A/c to trigonometric relations, sin(90 - x) = cos(x),
that means sin(90 - x) = cos(x) = 1/3.
that means sin(90 - x) = cos(x) = 1/3.
Answer:
[tex]\sin(90^{\circ} - x)=\frac{1}{3}[/tex]
Step-by-step explanation:
Given: [tex]\cos (x)=\frac{1}{3}[/tex]
We have to find the value of [tex]\sin(90^{\circ} - x)[/tex]
Since Given [tex]\cos (x)=\frac{1}{3}[/tex]
Using trigonometric identity,
[tex]\sin(90^{\circ} - \theta)=\cos\theta[/tex]
Thus, for [tex]\sin(90^{\circ} - x)[/tex] comparing , we have,
[tex]\theta=x[/tex]
We get,
[tex]\sin(90^{\circ} - x)=\cos x=\frac{1}{3}[/tex]
Thus, [tex]\sin(90^{\circ} - x)=\frac{1}{3}[/tex]