Answer :
[tex](5x-3)(x^3-5x+2)=5x^4-25x^2+10x-3x^3+15x-6=\\\\
5x^4-3x^3-25x^2+25x-6\\\\
Product\ is\ equal\ to\ 5x^4-3x^3-25x^2+25x-6[/tex]
(5x-3)(x^3 - 5x +2)
Use 5x to multiply each of (x^3 - 5x +2) and -3 to multiply each of (x^3 - 5x +2)
= 5x(x^3) +5x(-5x) +5x(2) -3(x^3) -3(-5x) -3(+2).
= 5x^4 - 25x^2 + 10x - 3x^3 + 15x - 6. Rearrange and Regroup
= 5x^4 - 3x^3 - 25x^2 + 10x +15x -6.
= 5x^4 - 3x^3 - 25x^2 + 25x -6.
That's it.
Use 5x to multiply each of (x^3 - 5x +2) and -3 to multiply each of (x^3 - 5x +2)
= 5x(x^3) +5x(-5x) +5x(2) -3(x^3) -3(-5x) -3(+2).
= 5x^4 - 25x^2 + 10x - 3x^3 + 15x - 6. Rearrange and Regroup
= 5x^4 - 3x^3 - 25x^2 + 10x +15x -6.
= 5x^4 - 3x^3 - 25x^2 + 25x -6.
That's it.