Answer :

luana
[tex](5x-3)(x^3-5x+2)=5x^4-25x^2+10x-3x^3+15x-6=\\\\ 5x^4-3x^3-25x^2+25x-6\\\\ Product\ is\ equal\ to\ 5x^4-3x^3-25x^2+25x-6[/tex]
(5x-3)(x^3 - 5x +2) 

Use 5x to multiply each of (x^3 - 5x +2) and -3 to multiply each of (x^3 - 5x +2)

= 5x(x^3) +5x(-5x) +5x(2) -3(x^3) -3(-5x) -3(+2).
=  5x^4 -  25x^2  + 10x  - 3x^3 + 15x - 6.    Rearrange and Regroup
= 5x^4 - 3x^3 -  25x^2 + 10x +15x -6.
= 5x^4 - 3x^3 -  25x^2 + 25x -6.

That's it.