Answer :
a;lsdkfj;alksjfka;l
ok so
here i am
woot
f(2) basically means substituting the value of x in the equation with a number 2
f(5) would mean subs x with a 5
and so on and so on until
i think u'll get it :)
ok so
here i am
woot
f(2) basically means substituting the value of x in the equation with a number 2
f(5) would mean subs x with a 5
and so on and so on until
i think u'll get it :)
we will proceed to solve each case to determine the solution
we have
[tex]f(x)=3x^2-4[/tex]
case 1) f(0)= 0
For [tex]x=0[/tex]
Find the value of f(x)
[tex]f(0)=3*0^2-4[/tex]
[tex]f(0)=-4[/tex]
so
[tex]f(0)\neq 0[/tex]
therefore
the statement case 1) is false
case 2) f(-2)= f(2)
For [tex]x=-2[/tex]
Find the value of f(x)
[tex]f(-2)=3*(-2)^2-4[/tex]
[tex]f(-2)=8[/tex]
For [tex]x=2[/tex]
Find the value of f(x)
[tex]f(2)=3*(2)^2-4[/tex]
[tex]f(2)=8[/tex]
so
[tex]f(-2)=f(2)[/tex]
therefore
the statement case 2) is true
case 3) f(2) + f(5) = f(7)
For [tex]x=2[/tex]
Find the value of f(x)
[tex]f(2)=3*(2)^2-4[/tex]
[tex]f(2)=8[/tex]
For [tex]x=5[/tex]
Find the value of f(x)
[tex]f(5)=3*(5)^2-4[/tex]
[tex]f(5)=71[/tex]
For [tex]x=7[/tex]
Find the value of f(x)
[tex]f(7)=3*(7)^2-4[/tex]
[tex]f(7)=143[/tex]
so
[tex]f(2)+f(5)\neq f(7)[/tex]
therefore
the statement case 3) is false
case 4) f(5) x f(2) = f(10)
For [tex]x=5[/tex]
Find the value of f(x)
[tex]f(5)=3*(5)^2-4[/tex]
[tex]f(5)=71[/tex]
For [tex]x=2[/tex]
Find the value of f(x)
[tex]f(2)=3*(2)^2-4[/tex]
[tex]f(2)=8[/tex]
For [tex]x=10[/tex]
Find the value of f(x)
[tex]f(10)=3*(10)^2-4[/tex]
[tex]f(10)=296[/tex]
so
[tex]f(5)*f(2)\neq f(10)[/tex]
therefore
the statement case 4) is false
The answer is
[tex]f(-2)= f(2)[/tex]