Answer :
vs - velocity on beginning
ve - velocity on ending. You've got:
[tex]v_s = 5 \frac{m}{s} \\ v_e=8 \frac{m}{s} \\ \hbox{Then:} \\ \Delta v=v_e - v_s = 8 \frac{m}{s} - 5\frac{m}{s}=3 \frac{m}{s} \\ a=0,75 \frac{m}{s^2} \\ \hbox{And from formula:} \\ a=\frac{\Delta v}{\Delta t} \qquad \Rightarrow \qquad \Delta t= \frac{\Delta v}{a} \\ \hbox{Substitute:} \\ \Delta t=\frac{3\frac{m}{s}}{0,75 \frac{m}{s^2}}= \frac{3}{\frac{3}{4}} s= 3 \cdot \frac{4}{3} s= 4 s[/tex]
So he needed 4 second.
ve - velocity on ending. You've got:
[tex]v_s = 5 \frac{m}{s} \\ v_e=8 \frac{m}{s} \\ \hbox{Then:} \\ \Delta v=v_e - v_s = 8 \frac{m}{s} - 5\frac{m}{s}=3 \frac{m}{s} \\ a=0,75 \frac{m}{s^2} \\ \hbox{And from formula:} \\ a=\frac{\Delta v}{\Delta t} \qquad \Rightarrow \qquad \Delta t= \frac{\Delta v}{a} \\ \hbox{Substitute:} \\ \Delta t=\frac{3\frac{m}{s}}{0,75 \frac{m}{s^2}}= \frac{3}{\frac{3}{4}} s= 3 \cdot \frac{4}{3} s= 4 s[/tex]
So he needed 4 second.