Answer :
[tex]7(x-1) < 9x+1[/tex]
[tex]7x-7 < 9x+1[/tex]
[tex]-7 < 2x+1[/tex]
[tex]-8 < 2x[/tex]
[tex]-4 < x[/tex]
[tex]\boxed{x>-4}[/tex]
[tex]7x-7 < 9x+1[/tex]
[tex]-7 < 2x+1[/tex]
[tex]-8 < 2x[/tex]
[tex]-4 < x[/tex]
[tex]\boxed{x>-4}[/tex]
[tex]7(x-1) < 9x+1\\7(x)+7(-1) <9x+1\\7x-7 < 9x+1\ \ \ \ |add\ 7\ to\ both\ sides\\7x < 9x + 8\ \ \ \ |subtract\ 9x\ from\ both\ sides\\-2x < 8\\2x > -8\ \ \ \ \ |divide\ both\ sides\ by\ 2\\\boxed{x > -4\Rightarrow x\in(-4;\ \infty)}[/tex]