[tex]-3x+y=-2 \\
y-4=-6x \ \ \ |\times (-1) \\ \\
-3x+y=-2 \\
\underline{-y+4=6x} \\
-3x+y-y+4=6x-2 \\
-3x+4=6x-2 \\
-3x-6x=-2-4 \\
-9x=-6 \\
x=\frac{-6}{-9} \\
x=\frac{2}{3} \\ \\
y-4=-6 \times \frac{2}{3} \\
y-4=-4 \\
y=-4+4 \\
y=0 \\ \\
(x,y)=(\frac{2}{3},0)[/tex]
The system has one solution so it's A. consistent and independent.