Answer :
765° = 45°
1485° = 45°
We get 2sin(45°) + tan(45°) + cot(135)
sin(45) = sqrt(2)/2
tan(45) = 1
cot(135) = -1
we get
2*[sqrt(2)/2)] + (1) + (-1)
= sqrt(2)
1485° = 45°
We get 2sin(45°) + tan(45°) + cot(135)
sin(45) = sqrt(2)/2
tan(45) = 1
cot(135) = -1
we get
2*[sqrt(2)/2)] + (1) + (-1)
= sqrt(2)
[tex]2sin765^o+tan1485^ocot135^o\\\\=2sin(2\cdot360^o+45^o)+tan(8\cdot180^o+45^o)cot(90^o+45^o)\\\\=2sin45^o+tan45^o\cdot(-tg45^o)\\\\=2\cdot\frac{\sqrt2}{2}+1\cdot(-1)=\sqrt2-1[/tex]