Answer :
The formula for the midpoint:
[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
x₁, y₁ - the coordinates of one endpoint
x₂, y₂ - the coordinates of the other endpoint
[tex](1,2) \\ x_1=1 \\ y_1=2 \\ \\ (-3,6) \\ x_2=-3 \\ y_2=6 \\ \\ \frac{x_1+x_2}{2}=\frac{1-3}{2}=\frac{-2}{2}=-1 \\ \\ \frac{y_1+y_2}{2}=\frac{2+6}{2}=\frac{8}{2}=4 \\ \\ \boxed{(-1,4)} - \hbox{the midpoint} \Leftarrow \hbox{the answer is C}[/tex]
[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
x₁, y₁ - the coordinates of one endpoint
x₂, y₂ - the coordinates of the other endpoint
[tex](1,2) \\ x_1=1 \\ y_1=2 \\ \\ (-3,6) \\ x_2=-3 \\ y_2=6 \\ \\ \frac{x_1+x_2}{2}=\frac{1-3}{2}=\frac{-2}{2}=-1 \\ \\ \frac{y_1+y_2}{2}=\frac{2+6}{2}=\frac{8}{2}=4 \\ \\ \boxed{(-1,4)} - \hbox{the midpoint} \Leftarrow \hbox{the answer is C}[/tex]