Answer :

[tex](2x^4)^{-4}=2^{-4}\cdot (x^4)^{-4}=\dfrac{1}{2^4}\cdot \dfrac{1}{(x^{4})^4}=\dfrac{1}{16}\cdot \dfrac{1}{x^{16}}=\dfrac{1}{16x^{16}}[/tex]
[tex]{ \left( { \left( 2x \right) }^{ 4 } \right) }^{ -4 }\\ \\ =\frac { 1 }{ { \left( { \left( 2x \right) }^{ 4 } \right) }^{ 4 } }[/tex]

[tex]\\ \\ =\frac { 1 }{ { \left( 2x \right) }^{ 16 } } \\ \\ =\frac { 1 }{ { 2 }^{ 16 }{ x }^{ 16 } } \\ \\ =\frac { 1 }{ 65536{ x }^{ 16 } } [/tex]