Answer :
Midpoint formula [tex]\left( \dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]
Let S denote the midpoint of R and T
[tex]S=\left( \dfrac{-3+5}{2},\dfrac{4-2}{2}\right)\\ S=\left( \dfrac{2}{2},\dfrac{2}{2}\right)\\ S=\left( 1,1\right) [/tex]
Let S denote the midpoint of R and T
[tex]S=\left( \dfrac{-3+5}{2},\dfrac{4-2}{2}\right)\\ S=\left( \dfrac{2}{2},\dfrac{2}{2}\right)\\ S=\left( 1,1\right) [/tex]
The coordinates of the midpoint:
[tex](\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex]
(x₁,y₁) and (x₂,y₂) - the coordinates of the endpoints
[tex](-3,4) \\ x_1=-3 \\ y_1=4 \\ \\ (5,-2) \\ x_2=5 \\ y_2=-2 \\ \\ \frac{x_1+x_2}{2}=\frac{-3+5}{2}=\frac{2}{2}=1 \\ \\ \frac{y_1+y_2}{2}=\frac{4-2}{2}=\frac{2}{2}=1[/tex]
The coordinates of the midpoint are (1,1).
[tex](\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})[/tex]
(x₁,y₁) and (x₂,y₂) - the coordinates of the endpoints
[tex](-3,4) \\ x_1=-3 \\ y_1=4 \\ \\ (5,-2) \\ x_2=5 \\ y_2=-2 \\ \\ \frac{x_1+x_2}{2}=\frac{-3+5}{2}=\frac{2}{2}=1 \\ \\ \frac{y_1+y_2}{2}=\frac{4-2}{2}=\frac{2}{2}=1[/tex]
The coordinates of the midpoint are (1,1).