The formulas:
[tex]\log_a (xy)=\log_a x + \log_a y \\
\log_a (\frac{x}{y})=\log_a x - \log_a y \\
\log_a (x^n)n \log_a x[/tex]
Expand the expression:
[tex]\log_b (\frac{m^2n}{p})=\log_b m^2 + \log_b n - \log_b p= 2 \log_b m+\log_b n - \log_b p[/tex]
Plug the values into the expression:
[tex]\log_b m=3.2 \\ \log_b n=-1.5 \\ \log_b p=2.4 \\ \\
2 \log_b m+\log_b n - \log_b p=2 \times 3.2-1.5-2.4=6.4-3.9=2.5 \\ \\
\boxed{\log_b (\frac{m^2n}{p})=2.5}[/tex]