Answer :
[tex]7( \frac{1}{3} + \frac{4}{5} )[/tex]
[tex]=7( \frac{1(5)}{3(5)} + \frac{4(3)}{5(3)} )[/tex]
[tex]=7( \frac{5}{15} + \frac{12}{15} )[/tex]
[tex]=7( \frac{17}{15})[/tex]
[tex] =\frac{7}{1} ( \frac{17}{15})[/tex]
[tex] =\frac{119}{15}[/tex]
[tex]= 7\frac{14}{15} [/tex] ≈ 7.93
[tex]=7( \frac{1(5)}{3(5)} + \frac{4(3)}{5(3)} )[/tex]
[tex]=7( \frac{5}{15} + \frac{12}{15} )[/tex]
[tex]=7( \frac{17}{15})[/tex]
[tex] =\frac{7}{1} ( \frac{17}{15})[/tex]
[tex] =\frac{119}{15}[/tex]
[tex]= 7\frac{14}{15} [/tex] ≈ 7.93
¹¹⁹/₁₅ or 7¹⁴/₁₅ or 7.93
Further explanation
The Problem:
- 7 times as much as the sum of [tex]\frac{1}{3}[/tex] and [tex]\frac{4}{5}[/tex]
- Write an expression to match, and then solve it.
The Process:
Here are some early expressions that need attention.
- one-third is [tex]\boxed{\frac{1}{3}}[/tex]
- four-fifth is [tex]\boxed{\frac{4}{5}}[/tex]
- the sum of [tex]\frac{1}{3} \ and \ \frac{4}{5}[/tex] is [tex]\boxed{\frac{1}{3} + \frac{4}{5}}[/tex]
Let us write an expression to match for 7 times as much as the sum of [tex]\frac{1}{3}[/tex] and [tex]\frac{4}{5}[/tex]
[tex]\boxed{\boxed{ \ 7 \times \bigg(\frac{1}{3} + \frac{4}{5} \bigg) \ }}[/tex]
Let us calculate the operation in parentheses at first.
[tex]\boxed{\frac{1}{3} + \frac{4}{5}}[/tex]
A least common multiple of 3 and 5 is 15. We use to equate the denominator.
[tex]\boxed{\frac{1 \times 5}{3 \times 5} + \frac{4 \times 3}{5 \times 3}}[/tex]
[tex]\boxed{\frac{5}{15} + \frac{12}{15}}[/tex]
[tex]\boxed{\frac{17}{15}}[/tex]
And now we solve the full expression.
[tex]\boxed{ \ = 7 \times \bigg(\frac{1}{3} + \frac{4}{5} \bigg) \ }[/tex]
[tex]\boxed{ \ = 7 \times \frac{17}{15} \ }[/tex]
We do not cross out 7 and 15 because they both cannot be divided.
[tex]\boxed{ \ = \frac{119}{15} \ }[/tex]
[tex]\boxed{\boxed{ \ = \frac{119}{15} \ }}[/tex]
In mixed fraction:
[tex]\boxed{ \ \frac{119}{15} = \ ? \ }[/tex]
[tex]\boxed{ \ = \frac{105}{15} + \frac{14}{15} \ }[/tex]
[tex]\boxed{ \ = 7 + \frac{14}{15} \ }[/tex]
[tex]\boxed{\boxed{ \ = 7\frac{14}{15} \ }}[/tex]
In decimal:
[tex]\boxed{ \ 7\frac{14}{15} = \ ? \ }[/tex]
[tex]\boxed{ \ \frac{14}{15} = 0.93 \ }[/tex]
[tex]\boxed{ \ = 7 + \frac{14}{15} \ }[/tex]
[tex]\boxed{ \ = 7 + 0.93 \ }[/tex]
[tex]\boxed{\boxed{ \ = 7.93 \ }}[/tex]
[tex]\boxed{\boxed{ \ Thus, \ the \ result \ is \ \frac{119}{15} \ or \ 7\frac{14}{15} \ or \ 7.93 \ }}[/tex]
- - - - - - - - - -
Quick Steps:
[tex]\boxed{ \ = 3 \times \bigg(\frac{1}{3} + \frac{4}{5} \bigg) \ }[/tex]
[tex]\boxed{ \ = 3 \times \bigg(\frac{5 + 12}{15} \bigg) \ }[/tex]
[tex]\boxed{ \ = 3 \times \bigg(\frac{17}{15} \bigg) \ }[/tex]
[tex]\boxed{\boxed{ \ = \frac{119}{15} \ }}[/tex]
[tex]\boxed{\boxed{ \ = 7\frac{14}{15} \ }}[/tex]
[tex]\boxed{\boxed{ \ = 7.93 \ }}[/tex]
Learn more
- 7 copies of the sum of 8 fifths and 4 https://brainly.com/question/961462
- [tex]\frac{2}{3}[/tex] of the product of [tex]\frac{3}{8}[/tex] and 16 https://brainly.com/question/961462
- 15 times as much as 1 fifth of 12 is https://brainly.com/question/348151
Keywords: 7 times, as much as, the sum of 1/3 and 4/5, write an expression to match, and then solve, the result, in mixed fraction, decimal, ¹³/₄ or 3¹/₄ or 3.25