[tex]\lim_{x\to\infty}\dfrac{\sqrt x}{\sqrt{x+\sqrt{x+\sqrt x}}}=\\
\lim_{x\to\infty}\dfrac{\dfrac{\sqrt x}{\sqrt x}}{\dfrac{\sqrt{x+\sqrt{x+\sqrt x}}}{\sqrt x}}=\\
\lim_{x\to\infty}\dfrac{1}{\sqrt{\dfrac{x+\sqrt{x+\sqrt x}}{x}}}=\\
\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\dfrac{\sqrt{x+\sqrt x}}{x}}}=\\
\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\dfrac{\sqrt{x+\sqrt x}}{\sqrt{x^2}}}}=\\[/tex]
[tex]\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{x+\sqrt x}{x^2}}}}=\\\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\dfrac{\sqrt x}{\sqrt{x^4}}}}}=\\\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\sqrt{\dfrac{x}{x^4}}}}}=\\
\lim_{x\to\infty}\dfrac{1}{\sqrt{1+\sqrt{\dfrac{1}{x}+\sqrt{\dfrac{1}{x^3}}}}}=\\
=\dfrac{1}{\sqrt{1+\sqrt{0+\sqrt{0}}}}=\\[/tex]
[tex]=\dfrac{1}{\sqrt{1+0}}=\\
=\dfrac{1}{\sqrt{1}}=\\
=\dfrac{1}{1}=\\
1
[/tex]