Answer :
[tex] a^{2} + b^{2} = c^{2} \\ 5^{2} + 5^{2} = c^{2} \\ 25 + 25 = c^{2} \\ 50= c^{2} \\ \sqrt{50}= c \\ c=7.07[/tex]
[tex]c[/tex] ≈ [tex]7[/tex]
The hypotenuse is about 7 inches long.
[tex]c[/tex] ≈ [tex]7[/tex]
The hypotenuse is about 7 inches long.
The legs are 5 inches long.
Use the Pythagorean theorem:
[tex]5^2+5^2=c^2 \\ 25+25=c^2 \\ 50=c^2 \\ c=\sqrt{50} \\ c=\sqrt{25 \times 2} \\ c=5 \sqrt{2} \\ c \approx 7[/tex]
The length of the hypotenuse of the triangle is approximately 7 inches long.
Use the Pythagorean theorem:
[tex]5^2+5^2=c^2 \\ 25+25=c^2 \\ 50=c^2 \\ c=\sqrt{50} \\ c=\sqrt{25 \times 2} \\ c=5 \sqrt{2} \\ c \approx 7[/tex]
The length of the hypotenuse of the triangle is approximately 7 inches long.