Answer :
x, y - the numbers
The sum of the two numbers is 9.
[tex]x+y=9[/tex]
If one number is subtracted from the other, the result is 3.
[tex]x-y=3[/tex]
Solve the system of equations:
[tex]x+y=9 \\ \underline{x-y=3} \\ x+x=9+3 \\ 2x=12 \ \ \ |\div 2 \\ x=6 \\ \\ x+y=9 \\ 6+y=9 \ \ \ |-6 \\ y=3[/tex]
The numbers are 6 and 3.
The sum of the two numbers is 9.
[tex]x+y=9[/tex]
If one number is subtracted from the other, the result is 3.
[tex]x-y=3[/tex]
Solve the system of equations:
[tex]x+y=9 \\ \underline{x-y=3} \\ x+x=9+3 \\ 2x=12 \ \ \ |\div 2 \\ x=6 \\ \\ x+y=9 \\ 6+y=9 \ \ \ |-6 \\ y=3[/tex]
The numbers are 6 and 3.
Let's say x to the first number and y to the second one.
We add them : [tex]x+y=9[/tex]
Then we substract them : [tex]x-y=3[/tex]
Now we add the equations:
[tex](x+y)+(x-y)=9+3\\ x+x+y-y=12\\ 2x=12\\ \\ x=\frac { 12 }{ 2 } \\ \\ x=6[/tex]
and finally rewrite the equation:
[tex]6+y=9\\ y=9-6\\ y=3\\ \\ x=6\quad and\quad y=3[/tex]
We add them : [tex]x+y=9[/tex]
Then we substract them : [tex]x-y=3[/tex]
Now we add the equations:
[tex](x+y)+(x-y)=9+3\\ x+x+y-y=12\\ 2x=12\\ \\ x=\frac { 12 }{ 2 } \\ \\ x=6[/tex]
and finally rewrite the equation:
[tex]6+y=9\\ y=9-6\\ y=3\\ \\ x=6\quad and\quad y=3[/tex]