Answer :
The equation appropriate for this is
[tex]a_{n}=a_{1}+(n-1)d[/tex]
Wherein [tex]_{n}[/tex] is the missing term, [tex]a_{1}[/tex] is the first number in the sequence, and [tex]d[/tex] is the difference between the numbers.
So[tex]a_{50}=4+(50-1)6[/tex]
[tex]a_{50}=4+(49*6)[/tex]
[tex]a_{50}=4+(294)[/tex]
[tex]a_{50}=298[/tex]
*Sorry for the error.
[tex]a_{n}=a_{1}+(n-1)d[/tex]
Wherein [tex]_{n}[/tex] is the missing term, [tex]a_{1}[/tex] is the first number in the sequence, and [tex]d[/tex] is the difference between the numbers.
So[tex]a_{50}=4+(50-1)6[/tex]
[tex]a_{50}=4+(49*6)[/tex]
[tex]a_{50}=4+(294)[/tex]
[tex]a_{50}=298[/tex]
*Sorry for the error.
298, also 4 is first term. 49 terms left. 49*6=294
294+4=298
294+4=298