Answer :
[tex]x=3.\overline{48}\\
100x=348.\overline{48}\\
100x-x=348.\overline{48}-3.\overline{48}\\
99x=345\\
x=\dfrac{345}{99}=\dfrac{115}{33}\\\\
x=1.\overline{07}\\
100x=107.\overline{07}\\
100x-x=107.\overline{07}-1.\overline{07}\\
99x=106\\
x=\dfrac{106}{99}[/tex]
For the number 3.48 we have:
We multiply and divide the number by 100:
[tex] 3.48 * (\frac{100}{100}) =\frac{348}{100} [/tex]
We simplify the fraction obtained.
[tex] \frac{348}{100} =\frac{87}{25} [/tex]
Answer:
3.48 repeating as a fraction is:
[tex] 3.48 = \frac{87}{25} [/tex]
For the number 1.07 we have:
We multiply and divide the number by 100:
[tex] 1.07 * (\frac{100}{100}) =\frac{107}{100} [/tex]
The fraction obtained can not be simplified because we do not have multiples of the numerator and denominator equal.
Answer:
1.07 repeating as a fraction is:
[tex] 1.07 = \frac{107}{100} [/tex]