Answer :
[tex]y-intercept\ of\ f(x)\ is\ equal\ f(0)\ /value\ of\ function\ for\ x=0/\\-------------------------------\\\\y=2x^2-8x-10\to the\ quadratic\ function\ (y=ax^2+bx+c)\\\\y-intercept\to f(0)=a(0^2)+b(0)+c=c\\\\therefore\ y-intercept\ of\ y=2x^2-8x-10=-10\ \ \ \boxed{(0;-10)}[/tex]
The y-intercept is the point where the graph of the function crosses the y-axis.
But at all points on the y-axis, the x-coordinate is zero.
y = 2x² - 8x - 10
y = 2(0)² - 8(0) - 10
y = -10