Answer :
[tex] \frac{Angle}{360} [/tex] x [tex]2 \pi r[/tex]
[tex] \frac{125}{360} [/tex] x [tex]2 \pi (10)[/tex] = [tex]21.82[/tex]
Answer: The Arc measures [tex]21.82 feet[/tex]
[tex] \frac{125}{360} [/tex] x [tex]2 \pi (10)[/tex] = [tex]21.82[/tex]
Answer: The Arc measures [tex]21.82 feet[/tex]
Answer:
[tex]21.82\ ft[/tex]
Step-by-step explanation:
we know that
The circumference of a complete circle is equal to
[tex]C=2\pi r[/tex]
In this problem we have
[tex]r=10\ ft[/tex]
substitute
[tex]C=2\pi (10)=20 \pi\ ft[/tex]
Remember that
An angle of [tex]360\°[/tex] subtends the arc length of a complete circle
so
by proportion
Find the arc length for an angle of [tex]125\°[/tex]
[tex]\frac{20 \pi}{360}\frac{feet}{degrees}=\frac{x}{125}\frac{feet}{degrees}\\ \\x=125*(20\pi )/360\\ \\x=21.82\ ft[/tex]