Answer :

heyDB
Remove the extra parentheses.
w=q+p/q−qp

Since p is on the right-hand side of the equation switch the sides so it is on the left-hand side of the equation.
q+p/q−qp=w

Factor q out of q−qp. 
q+p/q⋅(1−1p)=w 

Rewrite −1p as −p. 
q+p/q⋅(1−p)=w 

Multiply q by 1−p to get q(1−p).
q+p/q(1−p)=w

Multiply each term in the equation by (1−p).
q+p/q(1−p)⋅(1−p)=w⋅(1−p) 

1+p/q=w−wp

Since −wp contains the variable to solve for, move it to the left-hand side of the equation by adding wp to both sides.
1+p/q+wp=w

Find the LCD of the terms in the equation.
It is q

Multiply each term in the equation by q in order to remove all the denominators from the equation.
p+wpq=−q+wq

Solve the equation.
p=q(w−1)/qw+1


Answer:
p=q(w−1)/qw+1
alright, here it is
w=(q+p)/(q-pq)
factor out the q in the bottom part

w=(q+p)/[(q)(1-p)]
multiply both sides by q
wq=(q+p)/(1-p)
add 1 to both sides, but add (1-p)/(1-p) to the right side since that equals 1
wq+1=(q+1+p-p)/(1-p)=(q+1)/(1-p)
multiply both sdies by (1-p)
(wq+1)(1-p)=q+1
divide both sdies by (wq+1)
1-p=(q+1)/(wq+1)
subtract 1 from both sdies
-p=[(q+1)/(wq+1)]-1
multiply by -1
p=-[(q+1)/(wq+1)]+1 or
[tex]p= -\frac{(q+1)}{(wq+1)}+1 [/tex]