Answer :
It's a linear function.
[tex]y=mx+b \\ \\x_1=-1 \\ y_1=-2 \\ \\ x_2=0 \\ y_2=1 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\fac{1-(-2)}{0-(-1)}=\frac{1+2}{0+1}=\frac{3}{1}=3 \\ \\ y=3x+b \\ (0,1) \\ 1=3 \times 0+b \\ 1=0+b \\ b=1 \\ \\ \boxed{y=3x+1} \Leftarrow \hbox{answer C}[/tex]
[tex]y=mx+b \\ \\x_1=-1 \\ y_1=-2 \\ \\ x_2=0 \\ y_2=1 \\ \\ m=\frac{y_2-y_1}{x_2-x_1}=\fac{1-(-2)}{0-(-1)}=\frac{1+2}{0+1}=\frac{3}{1}=3 \\ \\ y=3x+b \\ (0,1) \\ 1=3 \times 0+b \\ 1=0+b \\ b=1 \\ \\ \boxed{y=3x+1} \Leftarrow \hbox{answer C}[/tex]
Answer:
The answer is B: y = 3x + 1
Step-by-step explanation:
Look at the response above this to see the explanation!