Answer:
Total length of three boards is 10.
Step-by-step explanation:
Given expression is,
[tex]\Rightarrow 3\frac{1}{2}+2+4\frac{1}{2}[/tex]
First solving the mixed fraction into fractions.
[tex]\Rightarrow \frac{7}{2}+2+\frac{9}{2}[/tex]
Using commutative property, [a+b = b+a]
we can rewrite the given expression as,
[tex]\frac{7}{2}+(2+\frac{9}{2})=\frac{7}{2}+(\frac{9}{2}+2)[/tex]
Using associative property [a+(b+c) = (a+b)+c]
[tex]\frac{7}{2}+(\frac{9}{2}+2)=(\frac{7}{2}+\frac{9}{2})+2[/tex]
this reduces to , [tex]\frac{7+9}{2}+2=8+2=10[/tex]
Thus, total length of three boards is 10.