Answer :

[tex]26\cdot26\cdot10\cdot10\cdot10\cdot10\cdot10=\\ 26^2\cdot10^5=\\ 676\cdot 10000=\\ 67600000[/tex]
AL2006

The first letter can be any one of 26 letters.  For each one . . .
The second letter can be any one of 26 letters.  For each one . . .

The first digit can be any one of 10 digits.  For each one . . .
The second digit can be any one of 10 digits.  For each one . . .
The third digit can be any one of 10 digits.  For each one . . .
The fourth digit can be any one of 10 digits.  For each one . . .
The fifth digit can be any one of 10 digits.

The total number of possibilities is

                   (26 x 26 x 10 x 10 x 10 x 10 x 10) =

                   ( 26² x 10⁵) = (676 x 100,000) = 67,600,000 .