Answer :
Using the PSN method:
P = -9
S = 8
So N = 9,-1
Using 9 and -1 in the original equation gives:
[tex]k^2+9k-k-9=0 \\k(k+9)-1(k+9)=0 \\(k-1)(k+9) \\\\k=1,-9[/tex]
P = -9
S = 8
So N = 9,-1
Using 9 and -1 in the original equation gives:
[tex]k^2+9k-k-9=0 \\k(k+9)-1(k+9)=0 \\(k-1)(k+9) \\\\k=1,-9[/tex]
k² + 8k - 9 = 0
k = -8 +/- √(8² - 4(10)(-9))
2(1)
k = -8 +/- √(64 + 360)
2
k = -8 +/- √(424)
2
k = -8 +/- 20.59126028
2
k = -8 + 20.59126028 k = -8 - 20.59126028
2 2
k = 12.5912608 k = -20.5912608
2 2
k = 6.2956304 k = -10.2956304
k = -8 +/- √(8² - 4(10)(-9))
2(1)
k = -8 +/- √(64 + 360)
2
k = -8 +/- √(424)
2
k = -8 +/- 20.59126028
2
k = -8 + 20.59126028 k = -8 - 20.59126028
2 2
k = 12.5912608 k = -20.5912608
2 2
k = 6.2956304 k = -10.2956304